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THE THRESHOLDING GREEDY ALGORITHM,
GREEDY BASES, AND DUALITY

S. J. DILWORTH, N. J. KALTON, DENKA KUTZAROVA, AND V. N.
TEMLYAKOV

ABSTRACT. Some new conditions that arise naturally in the study
of the Thresholding Greedy Algorithm are introduced for bases of
Banach spaces. We relate these conditions to best n-term approxi-
mation and we study their duality theory. In particular, we obtain
a complete duality theory for greedy bases.
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1. INTRODUCTION

Let X be a Banach space with a basis (e,). An approximation
algorithm (F},)$° , is a sequence of maps F), : X — X such that for each
z € X, F,(z) is a linear combination of at most n of the basis elements
(e;). The most natural algorithm is the linear algorithm (S,)$; given
by the partial sum operators.

Recently, Konyagin and Temlyakov [5] introduced the Thresholding
Greedy Algorithm (TGA) (Gr)e,, where G, (z) is obtained by taking
the largest n coefficients (precise definitions are given in Section 2).
The TGA provides a theoretical model for the thresholding procedure

that is used in image compression and other applications.
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2 DILWORTH, KALTON, KUTZAROVA, AND TEMLYAKOV

They defined the basis (e,) to be greedy if the TGA is optimal in
the sense that G, () is essentially the best n-term approximation to x
using the basis vectors, i.e. there exists a constant C' such that for all
z € X and n € N we have

(1.1) flz—Gal(z)l < Cinf{lle—>_aje;|| : [Al =n, a; €R, j € A}.
jEA

They then showed that greedy bases can be simply characterized as

unconditional bases with the additional property of being democratic,

ie. for some A > 0 we have || > ., el < Al Y, pe;jll whenever

4] < |B].

They also defined a basis to be quasi-greedy if there exists a constant
C such that |G (2)|| < C||z|| for all z € X and n € N. Subsequently,
Wojtaszcezyk [9] proved that these are precisely the bases for which the
TGA merely converges, i.e. lim,, o, G,(z) =z for z € X.

In this paper we introduce two natural intermediate conditions. Let
us denote the biorthogonal sequence by (e¥). We say (e,) is almost
greedy if there is a constant C' such that
(1.2)
lo - Gu(@)| < Cint{lle = S ei(@ell : [Al=n} zeX, neN,

jEA
Comparison with (1.1) shows that this is formally a weaker condition;
in fact Wojtaszczyk’s examples of conditional quasi-greedy bases of /5
[9] are almost greedy but not greedy. We give two characterizations of
almost greedy bases in Theorem 3.3. First, a basis is almost greedy if
and only if it is quasi-greedy and democratic. Second, if A > 1, then
(en)>, is almost greedy if and only if there exists a constant C' such
that for all x € X and n € N, we have
(1.3)
o — Gpu (@)l < Cint{lls — S el : |4l =n, a; €R, j € A}.
JEA
Equation (1.2) is a very natural weakening of (1.1).

We also introduce partially greedy bases. These are bases such that

for some C' we have

(1.4) |z = Gu(@)l| < C|| Y er(z)er]l ze€X,neN
k=n+1

We give a characterization in Theorem 3.4.

Next we study duality of these conditions. In Theorem 5.1 we show
that if (e,) is a greedy basis of a Banach space X with nontrivial
Rademacher type then (e}) is a greedy basis of X*. However, examples
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at the end of the paper show that if X does not have type then (e} ) need
not be a greedy basic sequence. Theorem 5.4 generalizes Theorem 5.1
by showing that if (e,) is any quasi-greedy basis then (e,) and (e})
are both partially greedy basic sequences if and only if they are both
almost greedy basic sequences if and only if (e,) is bidemocratic, i.e.
for some C' we have

I el gl <cn [Al=n neN
JEA jEA

Using this result we extend Theorem 5.1 by showing that if X has
nontrivial type and (e,,) is almost greedy then (e¥) is an almost greedy
basic sequence.

We use standard Banach space notation throughout (see e.g. [7]).
For clarity, however, we recall here the notation that is used most
heavily. Let X be a Banach space. The dual space of X, denoted X™,
is the Banach space of all continuous linear functionals F' equipped
with the norm:

|1Fl = sup{F(z): ||z = 1}.
The closed linear span of a set A C X (resp., a sequence (z,)) is
denoted [A] (resp. [z,]). A basis for X is a sequence of vectors (e,)
such that every £ € X has a unique expansion as a norm-convergent

series
= Z er(x)epn.
k=1
Here (e}) is the sequence of biorthogonal functionals in X* defined

by €’ (eém) = Onm- The basis is said to be unconditional if the series
expansion converges unconditionally for every x € X. It is said to be
monotone if

I ei(@el <zl (z € X,n>1).
k=1

Finally, more specialized notions from Banach space theory, such as
type and cotype, will be introduced as needed.

2. GREEDY CONDITIONS FOR BASES

Let (en)nen be a basis of a Banach space X; let (€))nen be the
biorthogonal sequence in X*. Let us denote by S, the partial-sum
operators:
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We also define the remainder operators R,, = I — S,,. For any z € X
we define the greedy ordering for x as the map p : N — N such that
p(N) D {j : €j(z) # 0} and so that if j < k then either |e} (z)| >
€5y (@) or |ep(J (@) = lepu (x)| and p(j) < p(k). The m-th greedy
approximation is given by

Z e;‘) @\
j=1
We will also introduce the m-th greedy remainder
H,(z) =2 — Gp(x).
The basis (e,) is called quasi-greedy if Gp,(x) — x for all x € X. This

is equivalent (see [9]) to the condition that for some constant C' we
have

(2.1) sup |G (2)]| < C||z]| r e X.

It will be convenient to define the quasi-greedy constant K to be the
least constant such that

|Gm(@)l| < Kllz[ and  [[Hp(2)]| < Kllz]| 2 € X.
If (e,) is any basis we denote
om(z) =inf{[lz =D aje;l| - [A] =m, a; €R}.
jeA
A basis (e,) is called greedy [5] if there is a constant C' such that for
any ¢ € X and m € N we have
(2:2) [Hm(2)|| < Com().

It is natural to introduce two slightly weaker forms of greediness.
For any basis (e,) let

Gm(z) = inf{le Y ei(@)e] : |A] <m}.

kcA
Note that

Om(x) < () < ||Rm(z)|] = 0 as m — 0o.

Let us say that a basis (e,,) is almost greedy if there is a constant C' so
that:

(2.3) | Himz|| < Co,n(z).

We will say that a basis (e,,) is partially greedy if there is a constant
C so that for any z € X, m € N,

(2.4) [ Hm(z)|| < Cl| Bz
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It is clear that for any basis we have the following implications:
greedy = almost greedy = partially greedy = quasi-greedy.

Next we prove two useful lemmas concerning quasi-greedy bases.
These are both essentially due to Wojtaszczyk [9]. The first lemma says
that every quasi-greedy basis is unconditional for constant coefficients.

Lemma 2.1. Suppose (e,)nen has quasi-greedy constant K. Suppose
A is a finite subset of N. Then, for every choice of signs €; = £1, we
have

1

(25) eIl < I eesll < 2K Y el

JEA JjEA JjEA
and hence for any real numbers (a;);jca
(2.6) I Z%‘%‘H < 2K max a;]| Z%‘H-

JEA JEA
Proof. First note that if B C A and £ > 0 then

1D A+l <KDY (T+e)e+ D el
jeB jEB JEA\B

Letting ¢ — 0, we obtain || >, pe;ll < KI| > ,c4¢€;ll, and hence for
any choice of signs €; = £1, we have

13 el < 2K eyl
jeA jeA
This gives the right-hand inequality in (2.5) and the left-hand inequal-
ity is similar. By convexity (2.6) follows immediately. O

Lemma 2.2. Suppose (e,)nen has quasi-greedy constant K. Suppose
x € X has greedy ordering p. Then

(2.7) lenmy (@D eptm) || < 417 ]|
j=1

and hence if A is any subset of N and (a;)jca any real numbers,
(2.8) Héi}11|aj|||26j|| <AK®| Y age
’ jeA jeA
Proof. We prove (2.7) and then (2.8) is immediate. Let a; = e}(x). Let
€; = sgn a; and put 1/|ag| = 0. Then

|ap(m)||| ZGP(j)ePU)H = |a'p(m)||| Z ( > (Hj—l(x) - Hm(l‘))H
i=1 i=1

)| lapi—1y)

< 2K]||z]].
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We then use (2.5). O

We conclude this section by considering direct and inverse theorems
for approximation with regard to almost greedy bases. For a basis (e,,)
and greedy ordering p, denote, for x € X,

a(x) = |eg (7).
The following theorem was proved in [8].
Theorem 2.3. Let 1 < p < oo and let (e,) be a greedy basis with

#(n) < n'/P. Then for any 0 < r < oo and 0 < q < oo, we have the
following equivalence:

Z on(z)n" ! < 00 & Z an ()" P < oo,

n

We generalize this theorem as follows.

Theorem 2.4. Let 1 < p < oo and let (e,) be a democratic quasi-greedy
basis with ¢(n) < n'/P. Then for any 0 < r < oo and 0 < q < oo, we
have the following equivalence:

Z | H,(2)]|7n" ! < 0o & Za )i 1t/P < oo,
n

The proof of this theorem is similar to the proof of Theorem 2.3 and
is based on the following lemmas which are analogous to the corre-
sponding lemmas from [8].

Lemma 2.5. Let (e,) be a democratic quasi-greedy basis with ¢(n) =
n'/P. Then there exists a constant C' such that for any two positive
integers N < M and any x € X, we have

an(z) < C||Hy()||(M — N) /7.
Proof. This lemma follows from (2.8) of Lemma 2.2. O

Lemma 2.6. Let (e,) be a democratic quasi-greedy basis with ¢(n) =<
n'/P. Then there exists a constant C such that for any sequence mg <
my < ... of non-negative integers, we have

| Hom, (x ||<Czaml ) (1 — my)'P.

Proof. This lemma follows from (2.6) of Lemma 2.1. O

By Theorem 3.3 below we get that a democratic quasi-greedy basis
is almost greedy and also has the following property (setting A = 2 in
(3) of Theorem 3.3):

Tan(@) < [|Han(2)|| < Con(2)
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This inequality implies that
Z | Hy(2)]|9n7" < 00 & Zan )" < oo,

n

Therefore Theorem 2.3 holds with the assumption that (e,) is greedy
replaced by the assumption that (e,) is almost greedy, which yields
Theorem 2.4.

3. DEMOCRATIC AND CONSERVATIVE BASES

We recall that a basis (e,) in a Banach space X is called democratic
if there is a constant A such that

(3.1) 1D el <A el if |A] < |BI.

keA keB
This concept was introduced in [5]. The following characterization of
greedy bases was also proved in [5].

Theorem 3.1. A basis (e,,) is greedy if and only if it is unconditional
and democratic.

For a basis (e,) we define the fundamental function p(n) by
= sup 1> exll-
Alsn kea
The dual fundamental function is given by
= sup 1> eill.
Alsn kea

Note that ¢ (and ¢*) is subadditive (i.e. p(m+n) < ¢o(m)+¢(n)) and
increasing. It may also be seen that ¢(n)/n (and ¢*(n)/n) is decreasing
since for any set A with |A| = n we have

1

P e DD I

keA kEA jk
It follows that for any set A and any scalars (a; : j € A) we have:
(3.2) 1D aze;ll < 20(Al) max |a;|.

jJEA
It is clear that (ex) is democratic with constant A in (3.1) if and only
if
(3.3) AT(JA) < 1D el < @A), A < oo.

keA
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Lemma 3.2. Let (e,,) be a democratic quasi-greedy basis. Let K be the
quasi-greedy constant and A the democratic constant. Then for x € X
if p is the quasi-greedy ordering,

4K2A
3.4 e (@) < ——||z]|,
(3.4) |€pm) (2)] o) ]l
and

4K?A

3.5 sup |e;(Hpz)| < ————||z|].
(3.5) sup [, (Hm)| S0(m+1)|l I
Proof. This follows directly from (3.3) and Lemma 2.2 (2.7). O

Next we compare almost greedy bases with greedy bases. Essen-
tially in an almost greedy basis the convergence of the TGA is almost
optimal. It follows from (2) below and [9] that any conditional quasi-
greedy basis of a Hilbert space is actually almost greedy. See also [3]
for a conditional almost greedy basis of ¢;.

Theorem 3.3. Suppose (e,,) is a basis of a Banach space. The follow-
ing are equivalent:
(1) (e,) is almost greedy.
(2) (en) is quasi-greedy and democratic.
(8) For any (respectively, every) X\ > 1 there is a constant C = C), such
that

[Hixmjz|| < Cxom(z).

Proof. We start by showing (1) implies (2). It is immediate that (e,,)
is quasi-greedy. Now suppose |A| < |B]|. Suppose ¢ > 0 and define

T = Zej—i— Z (14 0)e;.
jeA jEB\A
Then if r = | B\ A| we have H,(z) = }_;_, e;. However
6,(2) < | Y es(@esl < 1Y el +0l Y el
jEB JEB JEB\A

Letting § — 0, it follows from (2.3) that (e,) is democratic.
Next we show that (2) implies (1) so that (1) and (2) are equivalent.
Suppose x € X and m € N. Let

Gm(z) = Ze;(x)ej
jeEA
where |A| = m. Suppose |B| =r < m. Then

Ha(z) = (x =) ej(@)e) + D ej(x)e;— D (e

j€B jeEB\A jEA\B
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Then |B\ A| < s:= |A\B|. Thus
I ela)el < 2K ( max |j(z)])e(s)

JEB\A

(by (2.6))

< 2K(jr€r£<13 €5 (2)])e(s)

<BKPA| ) el(w)ell
jEA\B

(by (3.4))
= 8K*A||Gy(z — Ze;f(ﬂ?)ej)ﬂ

<SK'All(z =) el(x)e))|-

jEB
We also have:
1Y €@l =Gz =) e
jEA\B jEB
Thus it follows that
|Hm()l| < BK*A+ K +1)|z =) ej(@)e]
jEB
and so, optimizing over B with |B| < m,
| Hp(2)|| € (BK*A + K + 1)6,(x).
Let us prove that (2) implies (3) for every A > 1. Assume K is
the quasi-greedy constant and A is the democratic constant. Assume

m,r € N. For + € X and A a finite subset of cardinality m, let
v =) s4€;(2)e;. Now suppose y is such that €j(y) # €j(z) only if

j € A. Then
G,(y) = Ze;(y)e]
jeB
where |B| = r. Let |[AN B| = s where 0 < s < min(r,m). Then
Hr(y) - Hr—s(v) = Hs(y - U) = Z e;(y)ej‘
JEA\B

Now by (3.5)

4K2A
max |ej(y)] < ———lyll-
jEA\B o(r+1)
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Hence by (2.6)

8K Ap(m)
(3.6) 1H:(y) = Hr—s(v)]| < o+l 1yl-

For € > 0 we can choose y so that ||y|| < on(z) + € and {j : e}(y) #
e;(r)} is contained in a set A of cardinality m as above. Note that
Omtr(2) < Omgr—s(z) < || Hr—s(v)]
and hence (3.6) and the triangle inequality yield
Tmtr(2) < [[Hps(v)]
< [[Hr(y)ll + 1 Hr(y) — Hr—s(v)]]

SRR,

p(r+1)
Since ||y|| < om(z) + € and € is arbitrary, we obtain

8K3Ap(m)
( o(r+1)

Next suppose A > 1 and r = [Am] — m. Now p(m)/p(r+1) <
m/(r + 1), so we have

< Kyl +

IN

Tmr(T) + K)o (z).

SK3A

Ol (2) < (5

This implies (3) with Cy < (A —1)"L.

It remains to show (3) (for some fixed A > 1) implies (2). That (e,)
is quasi-greedy is immediate. Note that if |D| = [Am], then

1D eill < p(m) < Ap(m).

jeD

+ K)o, (z)

So to prove that (e,) is democratic it is enough to show that
1> eill = @(m)/Cn.
jeD

Suppose |A| < m < oo. For any set B of cardinality [Am| disjoint from
A we have (by a statement argument as in the case (1) implies (2))

1D el < Croml( Y e) <Gl el
jeA jEAUB jen
whenever D C AU B with |D| > [Am]. Thus, maximizing over all A
with |[A] < m,

inf I|Z€y|l = p(m)/Cx

\D|=[Am]
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and so (e;) is democratic. O

If A, B are subsets of N we use the notation A < B to mean that
m € A,n € B implies m < n. We write n < A for {n} < A. Let us
define a basis (e,) to be conservative if there is a constant I" such that

(3.7) I e <TID el if|A] <|B|and A< B.
keA keB
The analogue of Theorem 3.1 and Theorem 3.3 is:

Theorem 3.4. A basis (ey,) is partially greedy if and only if it is quasi-
greedy and conservative.

Proof. Clearly a partially greedy basis is also quasi-greedy. Suppose
(en) is partially greedy (with constant C' in (2.4)) and A < B with
|A| = |B| = m. Let r = max A. Let D = [1,7] \ A and then for § > 0

let
x:Zek—F(l—i-(S) Z ek

keA keDUB
Then

I (@)l =11 el

keA
and
IR (@)l = (L+ )| Y exll
keB

so that letting 0 — 0 gives (3.7) with I' = C. O

Conversely, let us suppose (e,) is quasi-greedy with constant K and
conservative with constant I'. Suppose z € X and m € N. Let p be
the greedy ordering for . Then let D = {p(j) : j < m, p(j) < m},
and B = {p(j) : 7 < m, p(j) > m}. Let A = [1,m|\ D. Then
|A| = |B| =r, say, and A < B. Now

1) ei(@)erll = |G (Rm2)|| < K||Rpn].

keB
Also
1> ex(@)exll < 2K (max ek (@)} D exl
keA kecA
< 2KT( m1n lex(z)])]] ZekH
keB

< SKCT)| Y ef (a)es

keB
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(by (2.8))
< 8K*T||Rpnz]|.
Combining gives us

1Hmz || < | Rencell + 11D ei(@exl + 1Y ei(@)exl

keA keB
< (BK'T + K +1)|| Rz

4. BIDEMOCRATIC BASES

Suppose (e,) is a democratic basis. We shall say that (e,) has the
upper reqularity property (URP) if there exists an integer 7 > 2 so that

(4.1) o(rn) < rp(n) neN

This of course implies ¢(r¥n) < 2% r*p(n) and is therefore easily equiv-

alent to the existence of 0 < f < 1 and a constant C so that if m > n,
m\ B

(4.2) e(m) < C (2) (n).

We say (e,) has the lower regularity property (LRP) if there exists
r > 1 so that for all n € N we have

(4.3) p(rn) > 2p(n) n € N.

This is similarly equivalent to the existence of 0 < o < 1 and ¢ > 0 so
that if m > n
m

(44) p(m) > e (=) o(n).

n

Let us recall that a Banach space X has (Rademacher) type 1 < p <
2 if there is a constant C' so that

n n
1 1
(Ave | Y eas7)7 <Y lmlP)e wneyza € XoneN,
T j=1 j=1

The least such constant C' is called the type p-constant 7,,(X). X has
(Rademacher) cotype 2 < g < oo if there exists a constant C' such that

n n
1 1
(3 llaslne < C(Ave Y- ea)s @1, @ € XneN.
j=1 T =

The least such constant C' is called the cotype g-constant C,(X).
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Proposition 4.1. (1) If (e,) is an almost greedy basis of a Banach
space with non-trivial cotype then (e,) has (LRP).

(2) If (e,) is an almost greedy basis of a Banach space with non-trivial
type then (e,) has (LRP) and (URP).

Proof. (1) Suppose K is the quasi-greedy constant of (e,) and A is
the democratic constant. Suppose X has cotype ¢ < co with constant
Cy(X). Let By,---, B, be disjoint sets with |B;| = n and let A =
U, By. Then, using Lemma 2.1, (2.5), and (3.3)

e <A<znzejnq)

=1 j€EBg

<2KA (Z Ave || Y ejejl® )

JEB

< 2KAC,( (Ave I Zejejnff)

jeA
<AKAC,(X)p(mn).

It is clear this implies (4.4) for some suitable constant ¢ > 0 and o = %.

(2) Since nontrivial type implies nontrivial cotype we obtain (LRP)
immediately. The proof of (URP) (with § = % when X has type p) is
very similar. Using the same notation and assuming X has type p > 1
with constant 7T,,(X) we have:

p(mn) < 2KA( Ave I Zeje]H %

jJEA
< 2KAT,(X (Z Ave | > ejej||p)
9= JEB
< 4KATp(X)m5g0(n).
This implies (4.2) for suitable constants. O

We now say that a basis (e,,) is bidemocratic if there is a constant A
so that

(4.5) p(n)e"(n) < An.

Proposition 4.2. If (e,) is bidemocratic (with constant A) then (e,)
and (e}) are both democratic (with constant A) and are both uncondi-
tional for constant coefficients.



14 DILWORTH, KALTON, KUTZAROVA, AND TEMLYAKOV

Proof. If A is any finite set we have

A<D el eill < o (1ADID el

jeA jeA jeA
Hence
A4 < (1) el
jeA
and so (e,) is democratic with constant A. Let (¢;);ca be any choice
of signs +1. Then

AL <UD el esesll < 20°(1ADI Y ejesll.

JjEA JEA JjEA
Hence
1
S 24D < 1Y el < 260(14)).
jeA
Hence (e,) is unconditional for constant coefficients. Similar calcula-
tions work for (e}) to obtain the theorem. O

Proposition 4.3. A basis (e,,) is bidemocratic if and only if there is a
constant C' so that for any finite set A C N,

(4.6) 1D el eill < ClA].

keA keA

Proof. One direction is trivial. Assume (4.6) holds with C' > 1. Sup-
pose n € N. By passing to an equivalent norm on X, if necessary,
we may assume that (e,) and (e}) are both monotone. There exist
A, B C N with |A| <n,|B| <n and

1) el > 3en), 1D el > e (n).
jeA jeB

*
n

By monotonicity of (e,) and (e}) we may assume that |A| = |B| = n.
Let D=AUB, E=D\ A
> enell = s5¢(n) and || Yien €l > s5¢"(n) we obtain imme-
diately that
o(n)p*(n) < 2°C3|D| < 2"C3n.
Consider when one of these inequalities fails; we need only treat the

case || > cp el < s6¢(n). Then

I el = 1 el = eyl > 20 &), o)

JEE JjEA JjED
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and thus, as |E| < n, (4.6) gives

1€l < 4Cnp(n) .
jEE
We also have from (4.6) that

1) el < 2Cnp(n)~.

jeA
Hence
1) el < 6Cnp(n)™
jeD
and so
GCn o(n) 3n
n<|D|<IIZ€JIIIIZGII_ ( C) vy
je€D jeD
which is a contradiction. O

Proposition 4.4. If (e,) is a democratic quasi-greedy basis with (URP)
then (ey,) is bidemocratic.

Proof. We assume (4.2) holds, that (e,) is quasi-greedy with constant
K and democratic with constant A. Suppose A is a finite subset of N.
Pick z € X so that [|z]| = 1 and >, , €j(z) > %||ZJ6A e3l|. Let p be
the greedy orderlng for x. Then by (3.5), if |A| =n,

WY el <20(n) ) lej(a

JeEA ]EA

< 290 Z |€p(k

p(n)
<8KPAY) =
,; (k)
<8K’ACn® Y k™
k=1
S C’ln

for a suitable constant C;. This implies p(n)p*(n) < Cin. O

Corollary 4.5. Let (e,) be a quasi-greedy basis for a Hilbert space.
Then (e,) is bidemocratic.

Proof. Wojtaszczyk [9] proved that (e,,) is democratic and that ¢(n) <
\/n. So the result follows from Proposition 4.4. O
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Remark 4.6. Proposition 4.4 breaks down for bases that are not quasi-
greedy. To see this, let (e?) be the unit vector basis of £,. We define a
normalized basis (f,,) of ¢y @ £, as follows:
1 1 3
fon1 = ﬁ(ei—i—eﬁ); fon = §€i+§eﬁ-

Suppose that 1 < p < 2. It is easy to check that (f,,) and (f;) are both
democratic and unconditional for constant coefficients, that p(n) =
n'/P, and that p*(n) < y/n. So both (f,) and (f*) have (URP) but
(fx) is not bidemocratic.

5. DUALITY OF ALMOST GREEDY BASES

Theorem 5.1. Let (e,) be a greedy basis with (URP). Then (e%) is
a greedy basic sequence. In particular, if (e,) is a greedy basis of a

Banach space X with non-trivial type then (e) is a greedy basis of X*.

Proof. Since (e};) is automatically unconditional this follows from Propo-
sition 4.4 and Theorem 3.1. The second part follows from Proposition
4.1; note that any space with nontrivial type and an unconditional
basis is reflexive by James’s theorem [4]. O

Remark 5.2. In [3] there is an example of an almost greedy basis (e,,)
of ¢; such that (e}) is not unconditional for constant coefficients, thus
not quasi-greedy. The example localizes to give a quasi-greedy basis of
the reflexive space () ®/7})s whose dual basis is not quasi-greedy. On
the other hand, it follows from Corollary 4.5 above and Theorem 5.4
below that in a Hilbert space the dual basis of a quasi-greedy basis
is always quasi-greedy (in fact, both the basis and its dual are almost

greedy).

Corollary 5.3. If 1 < p < oo the space L, has a greedy basis not
equivalent to a rearranged subsequence of the Haar system.

Proof. For p > 2 Wojtaszczyk [9] constructed such a basis with ¢(n) =
n'/P, hence with (URP). The case p < 2 follows by duality using The-
orem 5.1. |

Theorem 5.4. Let (e,) be a quasi-greedy basis of a Banach space X .
Then the following are equivalent:

(1) (e,) is bidemocratic.

(2) (en) and (ef) are both almost greedy.

(3) (en) and (e}) are both partially greedy.

Proof. We first prove (1) implies (2). Let A denote the bidemocratic

constant. In fact by Proposition 4.2 we only need show that (e) is
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quasi-greedy. Let us denote by G, and H} the greedy operator and
greedy remainder operators associated to the dual basic sequence (e).
Suppose z* € X* and x € X.

First note that if |A| = m then

D lat(ey)] < el sup. I|Z%€J||
€j==%

JEA
< 2¢(m)||z” ||-
Hence
5.1 sup |(H: z™)(e;)| < 2—-Z]|27]].
(5.1) jeNpl( ) (e)| < 1 2"l

On the other hand (3.5) implies that

4K2A
(5.2) jlelgle( m(@))]| < (m+1)ll z|-

Suppose G () = > _ c 4 €5(2)e; and Gy, (z%) = >, p " (e;)e; where
|A| = |B] = m. Then

(") (Gm(@) =10 D 2 (e5)e)) ()]

jEA\B
<|| Z (e5)e; ||l
jEA\B
e(m + 1)p*(m .
< 2D ey
m+1
(by (3.2) and (5.1))
< AA||z |||z
Also,
[(Grz™) (Hpm())| = |2%( Z e;(w)e;)|
jEB\A
AK?Allz||
< |z /=g
< [lz*|] SO(Tle)( ©(m))
(by (5.2))
< 8K2A|z|l[|z*].
Now

Grx*(z) = 2" (Gpz) — (H2") (Gmzx) + G, (27) (Hpx).
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Hence
|Grz™(2)] < (K +4A + 8K A) ||z [|2*]|
so that
|GE || < (K +4A +8K2A)||z*|.

) is a quasi-greedy basic sequence, and proves (1) im-

*
n

This implies (e
plies (2).

Of course (2) implies (3) so it remains to prove (3) implies (1). Let
us assume that K is a quasi-greedy constant for both (e,) and (e}),
and that I" is a conservative constant for both (e,) and (e).

Suppose A is any finite subset of N. For z € [ej]jga,lety =D, 4 e;+
z. First suppose that [e}(z)| # 1 for all j. Then

1D el <l Y. el +1I Y. el
jeA lej (y)|<1 lej (y)I<1
< 2K]jy|l-
By continuity, [|> ;c4e5ll < 2K|ly[| for all z € [ej]jga. Thus, by

Nikol’skii’s Duality Theorem (see e.g. [6]), there exists z* € [e;]jea
with [|z*|| = 1 and

N 1
5.9 (el = 5l el
jEA jEA
Now suppose m € N. Choose Ay, By with |Ag|,|Bp| < m and
1) el = 3e(m), 1D el = o7 (m).
JjEAo j€Bo

Now let A be any subset of N with |A| = 2m and A > max(Ay, By).
Note that if D C A and |D| > m, then since (e,) and (e}) are
conservative with constant I,

G4 Il > gmem), 1Y€l > e m).

jeD jeD

Let us choose u* € [ef]jea such that 3., [uj(e;)|* is minimized subject
to [Ju*|] <1 and

. p(m)
(5.5) ZU (ej) = K

This is possible by (5.3) and (5.4).
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Now let G, (u*) = >_;cpu(ej)e; where B C A and [B| = m. Let
D = A\ B. We observe that by (2.7) we have

m1n|u e; |||Ze | <4K?

and hence by (5.4)

(5.6) wmin fu*(e;)] <

We then again use (5.3) to find v* € [e ]]ED with [|v*|| = 1 and

e(m)
2 v(e)) > 4PK
It follows from the minimality assumption on u* that

D (=t (e)) + tv*(e))* = > (v’

jeEA jeEA

for 0 <t <1 and so using (2.8) and (5.6),

D ut(e;)’ < ut(ej)v

jeA jeA
<m1n|u e; |Z|v e;)|
JjE€ED
8K2
gnaggglljeZDﬁaegH

< 16K2F<p(m)
pr(m)
Thus from (5.5)

(p(m))* < 2'T°K* <Z Iu*(ej)|>

jeA
< 2'T?K*m Z u*(e;)?
jeA
2813 K4mp(m)
p*(m)

which gives the estimate
() (m) < 2T K*m
so that (e,) is bidemocratic. O
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Corollary 5.5. Let X be a Banach space with non-trivial type. If
(en) is an almost greedy basis of X then (el) is an almost greedy basic
sequence in X*.

Proof. This follows directly from Theorem 5.4 and Proposition 4.4. [

Corollary 5.6. Suppose that (e,) and (e}) are both partially greedy
and that (n) < n. Then (e,) is equivalent to the unit vector basis of

.
Proof. By Theorem 5.4, (e,) is bidemocratic. Hence

©*(n) <xn/pn) =< 1.

But this implies that (e}) is equivalent to the unit vector basis of co,

which gives the result. (

Example 5.7. Let us conclude this section by showing that if ¢ :
N — (0,00) is an increasing function satisfying ¢(1) = 1 and ¢(n)/n
is decreasing, but failing (4.1) then it is possible to construct a Banach
space with a greedy basis (e,) with a fundamental function equivalent
to ¢(n) and such that the dual basic sequence (e¥) is not greedy. This
will show that the preceding theorem is, in some sense, sharp. In
Example 5.9, we will show under very mild additional conditions on ¢
how to make a reflexive example.

Let us define the sequence space X, to be the completion of cyy for
the norm

1€]l = sup sup @ > &

ne A keA

It is clear that the canonical basis is unconditional. It also democratic
since if |A| = n,

(5.7) 3e(n) < 1Y el < oln)
keA

*

Let us suppose the dual basic sequence (e}) is democratic with demo-
cratic constant A. We note that if A > n then

1> eill < n/e(n).

keA

It follows from the democratic assumption that

1> eill < An/o(n).
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Now consider

Clearly [|£]| < 1 and so

3
3

We deduce that

Now any m,n with m > 2 we have

Hence

<
p(mn) < logm

For large m this shows that (4.1) holds.

Remark 5.8. The end of the proof of Example 5.7 actually establishes
one direction of the following equivalence (the other direction is easier):
(p(n)) satisfies (URP) if and only if (1/¢(n)) is regular, i.e., if and only
if there exists C' > 0 such that

1 C 1
25;(—

Regular weight sequences arise also in the theory of Lorentz spaces.

Example 5.9. Now let us suppose, in addition, that p(n)/n’ is in-
creasing for some choice of § > 0. We show how to make the preceding
example reflexive.

Let ¥(n) = ¢(n)'**n=%. Then 1 (n)/n is decreasing and v (n) is
increasing. Define X, as in Example 5.7 for the function . Let § =
(1+0)7"
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Let T denote Tsirelson space (cf. [2]). For our purposes it is only
necessary to know that this space is reflexive,

<) ellr<n |4 =n
JEA

and

1> el

JEA

™ <2 if |Al =n and n < A.

Now let Y = [T, X;;]9 be the space obtained by complex interpolation.
Since T is reflexive it follows from a result of Calderdén [1] that Y is
reflexive. Note that Y = [T, X/]s.

Now suppose A C N and |A| = n. Then

1Y eilly <n1) eillk, < en)
jeA jeA
On the other hand if n < A we have

13 €l <

JjEA JEA JjEA

||X¢* — ( )

Hence for any A with |A| = 2n we have

I el > 2

JEA
Thus (e;) is democratic with fundamental function equivalent to ¢.
Now suppose (€}) is democratic with constant A. Then

o n
1 eslly <28——
Pl w(n)

Now Y* = (T*)'7%(X;)? C Z := ()" %(X;)? and so we have

I|Ze ly- > IIZe |z = I|Ze [t "IIZ %, = I|Ze 15
We deduce that
16 _ 19 1
“E: A=A g

Hence by the argument presented in Example 5.7, we have that

vom) < & (T) wm) m>n

X*.
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for some B < 1 and Cy. Now
B+

1 LTo
p(m) < CFF (Z) T pn)  m>m.
n
This implies ¢ satisfies (4.1).
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